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Antimicrobial peptides (AMPs) are active short peptides that exist in microorganisms, 

insects, amphibians, plants, and mammals. Some naturally occurring AMPs have low 

antimicrobial activity, high haemolysis, potential toxicity toward mammalian cells, and 

high susceptibility to proteolytic degradation, which limit their practical application. In 

recent years, many efforts have been made to design and modify AMPs to improve their 

properties. The present review focuses on site-directed mutation, truncation, hybridisation, 

capping, and cyclisation of AMPs. The review further introduces the application of solid-

phase peptide synthesis technology for AMPs, and summarises the methods for evaluating 

the antimicrobial activity of AMPs. The in-depth research on AMPs is expected to play an 

essential role in the fields of agriculture, animal husbandry, food industry, and medicine. 
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Introduction 

 

The constant changes in the ecological 

environment, and the abuse of traditional 

antimicrobial agents have led to the continuous 

evolution of microorganisms, making them more 

diverse and difficult to control. The emergence of 

drug-resistant bacteria has seriously affected the 

safety and health of humans and animals, and also 

threatened agricultural livelihoods and global food 

security (Kapil et al., 2020; Sazykin et al., 2021). 

Therefore, novel antimicrobial agents with better 

safety, higher efficiency, and lower drug resistance 

than traditional antibiotics are the need of the hour.  

Antimicrobial peptides (AMPs), also known as 

host defence peptides (HDPs), are essential 

components of the innate immune system across all 

living organisms (Hancock et al., 2021). Research has 

shown that a large number of AMPs also exhibit 

antibiofilm, antiviral, antifungal, antiparasitic, 

anticancer, immunomodulatory, and other activities 

(Kang et al., 2019; Selvarathinam et al., 2021; Yu et 

al., 2021). Until now, more than 3,000 AMPs have 

been identified, and this number keeps increasing 

every year (Li et al., 2021a). The majority of AMPs 

are relatively short (< 50 amino acid residues in 

length), cationic, and are able to fold into amphiphilic 

structures when on contact with bacterial membrane 

(Mookherjee et al., 2020).  

The traditional antibiotics target the receptors 

on the bacterial membrane or cytoplasm, which are 

limited in number; thus, bacteria develop drug 

resistance through mutations (Kapoor et al., 2017). 

The mechanism of action of AMPs does not involve 

specific receptors, and is quite different from that of 

traditional antibiotics. Most of the AMPs could act 

directly on the negatively charged bacterial 

membrane, change the permeability of the bacterial 

outer and inner membranes, cause physical damage to 

the cell membrane, and eventually lead to bacterial 

death (Benfield and Henriques, 2020). Some of them 

might exert their antimicrobial activity by inhibiting 

protein synthesis (Zhou and Chen, 2011), inhibiting 

cell wall formation (Raja et al., 2017), inhibiting 

enzyme activity (Shinnar et al., 2003), or interacting 

with DNA/RNA (Han et al., 2021). Although the 

specific mechanism of a certain AMP remains 

undetermined, the synergistic effect of multiple 
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mechanisms is certain. AMPs could quickly kill 

bacteria without developing drug resistance, thus, 

making them an ideal alternative to conventional 

antibiotics. 

Naturally occurring AMPs have attracted great 

attention for their numerous advantages; however, 

they still have many drawbacks to their practical 

application. For example, some AMPs display 

relatively low antimicrobial activity, high 

haemolysis, potential toxicity toward mammalian 

cells, and high susceptibility to proteolytic 

degradation (Schmidtchen et al., 2002; Bacalum and 

Radu, 2015; Wang et al., 2021). Therefore, using 

different technologies to design and modify AMPs 

and then measure their activity has become the 

mainstream in the development of novel AMPs. The 

present review emphasises on site-directed mutation, 

truncation, hybridisation, capping, and cyclisation of 

AMPs. The present review further introduces the 

application of solid-phase peptide synthesis 

technology for AMPs, and summarises the methods 

for evaluating the antimicrobial activity of AMPs. 

The application prospects of AMPs in multiple fields 

are also predicted. 

 

Rational design of AMPs 

In recent years, various strategies have been 

implemented to design novel AMPs with potent 

activity and low cytotoxicity (Table 1). Experimental 

results have shown that the rationally designed AMPs 

usually exhibit superior antimicrobial activity than 

the parental peptides without causing cytotoxicity. 

The common methods for designing and modifying 

peptides include site-directed mutation, truncation, 

hybridisation, capping, cyclisation, etc.  

  

Site-directed mutation  

Site-directed mutation of the amino acid 

residues, which includes substitution, movement, 

insertion, and deletion of one or more amino acid 

residues, has mediated the formation of AMPs with 

desired biological activities (Huan et al., 2020). It has 

been found that the basic and hydrophobic amino 

acids in the peptide sequence are critical for 

enhancing peptide activity. Peptide aurein 1.2 

(GLFDIIKKIAESF-NH2), which was isolated from 

the skin secretions of Australian bell frogs, exhibited 

antimicrobial and anticancer activities (Rozek et al., 

2000). Migoń et al. (2019) investigated using alanine 

scanning the effects of each amino acid residue on the 

 

physicochemical and biological properties of aurein 

1.2. The analogues of aurein 1.2 (containing D4A or 

E11A substitutions, where the negatively charged 

aspartic and glutamic acid residues are replaced by 

hydrophobic alanine) exhibited improved 

antimicrobial activity against both Gram-positive and 

Gram-negative bacteria. Ramezanzadeh et al. (2021) 

designed three aurein 1.2 analogues, namely aurein 

M1 (GLFDIIKKIWESF-NH2), aurein M2 

(GLFKIIKKIAKSF-NH2), and aurein M3 

(GLFKIIKKIWKSF-NH2), by inserting hydrophobic 

tryptophan and cationic lysine residues into aurein 

1.2. Aurein M3 showed broad-spectrum 

antimicrobial activity, and its antimicrobial activity 

was significantly higher than parental peptide aurein 

1.2 and the other two analogues. These results 

suggested that the introduction of favourable amino 

acids into the peptide sequence contributed to 

enhancing the antimicrobial activity of the AMPs. 

The AMP Hp1404, identified from the venom of the 

scorpion Heterometrus petersii, displayed certain 

cytotoxicity toward mammalian cells (Li et al., 2014). 

Kim et al. (2018) designed a set of Hp1404 analogues 

to reduce its cytotoxicity by replacing glycine and 

phenylalanine with leucine and lysine residues. The 

resulting analogues showed less haemolysis and 

toxicity toward mammalian cells when compared 

with peptide Hp1404. 

 

Truncation 

The cost of synthetic AMPs is relatively high 

due to a large number of amino acid residues and 

complex structures. Truncating the heavy chain of the 

parental peptides, as well as retaining their active 

fragment, is a promising strategy for AMP 

optimisation. Dong et al. (2012) truncated the C-

terminus of linear avian β-defensin-4 to obtain 

peptide GL23. The cysteine in GL23 was then 

replaced with isoleucine to obtain a novel derivative 

peptide GLI23. The peptide GLI23 exhibited 

excellent antimicrobial activity and relatively low 

haemolysis when compared with avian β-defensin-4. 

Salasa et al. (2018) designed five peptides (pal-ano-9 

to pal-ano-5) by truncating the C-terminus of 

palmitoylated anoplin (pal-anoplin). The analogues, 

namely pal-ano-9 and pal-ano-6, significantly 

improved their activity against the fungus C. 

albicans. In addition to retaining or improving the 

antimicrobial activity, the truncated AMPs could 

sometimes reduce their toxicity toward mammalian 
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cells. Peptide P5 (KWKKLLKKPLLKKLLKKL-

NH2), a cecropin A-magainin 2 hybrid peptide, 

showed high antimicrobial activity against Gram-

positive / Gram-negative bacteria (Park et al., 2003). 

Six truncated peptides, namely P5-CT1, P5-CT2, P5-

CT3, P5-NT1, P5-NT2, and P5-NT3, were obtained 

by truncating two, four, and six amino acid residues 

at the C- or N-terminus of the peptide P5, 

respectively. These truncated peptides exhibited low 

haemolysis and cytotoxicity when compared with the 

parental peptide P5 (Kwon et al., 2019). Lin et al. 

(2013) obtained a series of truncated peptides by 

truncating peptide shrimp anti-lipopolysaccharide 

factor (SALF), epinecidin (Ep), and pardaxin (GE). 

The resulting peptides Ep-8 and GE-6 had a broad-

spectrum antimicrobial activity. Also, the 

combination of the truncated AMPs and non-peptide 

antibiotics reduced the minimum inhibitory 

concentrations (MICs) of peptides Ep-1, GE-1, GE-6, 

and Ep-8 against methicillin-resistant S. aureus 

(MRSA). Peptide LL-37 exhibited spermicidal 

activity against human and mouse sperm, as well as 

microbicidal activity against various sexually 

transmitted infection (STI) pathogens (Srakaew et al., 

2014; Tanphaichitr et al., 2016); however, LL-37 

contains 37 amino acid residues, which greatly 

increased the difficulty of its synthesis. Two 

truncated peptides, namely GI-20 and GF-17, located 

in the central helical structure of LL-37, exhibited 

spermicidal and microbicidal activity similar to LL-

37 (Kiattiburut et al., 2018). Lin et al. (2022) 

compared the antimicrobial activity of the truncated 

peptides pardaxin (1-22), MSI-78 (4-20), DMPC (1-

19), and cecropin B (1-21), and explored their 

antimicrobial mechanisms, and found that these 

peptides primarily exerted their activity through 

membrane destabilisation and disruption. 

 

Hybridisation 

Fink et al. (1989) proposed the theory of hybrid 

AMPs based on the antimicrobial mechanism of 

cecropin A and the effect of amino acid substitution 

on antimicrobial activity. Hybrid AMPs were 

reconstructed by covalently linking two or more 

peptide fragments, in which the advantages of each 

fragment were integrated, and the biological activity 

of AMPs was improved. Cecropin A, a well-studied 

AMPs, had strong antimicrobial activity, low 

toxicity, and high stability. The N-terminal ɑ-helix 

domain of cecropin A has been widely used to hybrid 

with the core sequence of other AMPs (e.g., LL37, 

magainin, melittin) to develop novel hybrid AMPs. 

Boman et al. (1989) designed a series of cecropin A-

melittin hybrid peptides, namely CA(1-24)-M(1-13), 

CA(1-13)-M(1-13), CA(25-37)-CA(1-13), M(1-13)-

CA(1-13), and CA(1-8)-M(1-18), where the 

haemolysis of these hybrid peptides was significantly 

lower than the parental peptide melittin, and the 

antimicrobial activity was similar to cecropin A and 

melittin. The hybrid peptide cecropin A(1-8)-

LL37(17-30) was obtained by connecting residues 1 

to 8 of cecropin A, with residues 17 to 30 of peptide 

LL37, and exhibited improved antimicrobial activity 

against indicator strains and lower haemolysis in 

sheep erythrocytes (Wei et al., 2016). Hybrid peptide 

magainin-thanatin (MT) (Tian et al., 2019) was 

constructed by combining residues 1 to 12 of 

magainin with residues 5 to 21 of thanatin. The MICs 

of hybrid peptide MT against S. aureus, E. coli DH5-

ɑ, and B. subtilis were 16.5, 20, and 9 μM, 

respectively, which were lower than the parental 

peptides. The theory of hybrid AMPs can further be 

used to design specifically targeted antimicrobial 

peptides (STAMPs), where the peptides with 

targeting function are hybridised with broad-

spectrum AMPs. STAMPs identified and killed the 

target bacteria to achieve the purpose of targeted 

therapy. Kim et al. (2016) designed three hybrid 

peptides by connecting LPS-targeting peptides 

lactoferrin (Lf 28-34), BPI 84-99, or de novo peptide 

(Syn) with the AMP GNU7 using a flexible linker. 

The resulting hybrid peptides Lf-GUN7, BPI-GNU7, 

and Syn-GNU7 displayed 8- to 32-fold improvement 

in antimicrobial activity against Gram-negative 

bacteria than the parental peptide GNU7. Syn-GNU7 

showed the strongest LPS-binding and LPS-

neutralising activities, and selectively eliminated 

Gram-negative bacteria from the mixed culture. 

 

Capping 

The AMPs with N- or C-terminal bare are 

easily recognised and cleaved by proteases, resulting 

in degradation or loss of activity. Therefore, the N- or 

C-terminal capping improved AMP stability and 

activity. The hydrophobic end modification of AMPs, 

a general capping method, is achieved by attaching an 

acyl group or a hydrophobic amino acid stretch to the 

N- or C-terminus of the parental peptides. The 

capping of AMPs also promoted the AMPs to bind or 

insert themselves into the lipid membrane, thus 

causing bacterial death (Schmidtchen et al., 2014). 

The addition of a variable length fatty acid tail to the 

file:///D:/Dict/8.9.9.0/resultui/html/index.html#/javascript:;
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N-terminus of AMPs has been regarded as an 

effective method to modulate peptide activity and 

selectivity. Zhong et al. (2019) designed and 

synthesised a series of anoplin analogues by 

conjugating fatty acids to the N-terminus of partial D-

amino acid substitution analogues of anoplin and its 

dimer. The analogues exhibited pronounced 

antimicrobial activity against the tested Gram-

positive and Gram-negative bacteria. Nielsen et al. 

(2022) designed a series of peptoids with lipid tails or 

halogen substituents. The small-angle X-ray 

scattering showed that these peptoids self-assembled 

into different nanostructures. The authors then 

explored the relationship between self-assembly 

structures and biological activity, and proved that 

certain self-assembled morphologies contributed to 

improving antimicrobial activity. The end-tagging 

with hydrophobic amino acid stretches (especially 

tryptophan and phenylalanine) was another 

interesting approach to improve peptide antimicrobial 

activity. The C-terminus of peptide GRRPRPRPRP 

was tagged with four aromatic amino acids, and the 

obtained peptide GRR10W4NH2 

(GRRPRPRPRPWWWW-NH2) displayed a broad-

spectrum antimicrobial activity and low toxicity 

toward human cells (Schmidtchen et al., 2011). 

 

Cyclisation  

Cyclopeptides, as compared to linear peptides, 

had a higher affinity for receptor subtypes, and were 

more resistant to proteases due to the constrained 

conformation of the backbone of cyclopeptide 

molecules. The lipopeptides colistin and daptomycin 

were found to be effective in the treatment of 

multidrug-resistant Gram-negative and Gram-

positive bacteria, and both contain a cyclic peptide 

part that is critical for their activity (Falagas and 

Kasiakou, 2005; Humphries et al., 2013). Oh et al. 

(2014) reported two classes of amphiphilic cyclic 

cell-penetrating peptides (CPPs), which showed 

potent antimicrobial activity. The cyclic peptide 

[R4W4] specifically displayed the strongest 

antimicrobial activity against methicillin-resistant S. 

aureus, with a MIC of 2.67 μg/mL, while exerting the 

expected cell-penetrating properties toward 

eukaryotic cells. Vernen et al. (2019) designed three 

cyclic analogues cTI, cTII, and cTIII based on the 

backbone cyclisation of tachyplesin I, II, and III, 

respectively. Although these three cyclic analogues 

had similar structure and activity against bacteria and 

cancerous cells with linear tachyplesin; the cyclic 

analogues had reduced toxicity toward human red 

blood cells, and also increased their stability in human 

serum. Thomsen et al. (2020) designed and 

synthesised 18 analogues of cyclic peptide BSI-9 

based on the differences in cyclisation point, 

hydrophobicity, and cationic side-chain length. 

Analogue 11 showed improved inhibitory activity 

against S. aureus and P. aeruginosa, with MICs of 8 

and 4 μg/mL, respectively. Cyclic amphiphilic 

peptides [W4KR5] obtained by N- to C-cyclisation of 

linear peptide W4KR5 had improved activity as 

compared to linear peptide W4KR5. The combination 

of [W4KR5] with other antibiotics significantly 

improved the antimicrobial effect, and could be used 

to treat multidrug-resistant pathogens (Mohammed et 

al., 2022). 

 

Others 

Some of the other effective methods to design 

and modify AMPs include the introduction of 

unnatural amino acids, PEGylation, de novo design, 

computer design, halogenation, and others. Oliva et 

al. (2018) designed three cationic peptides containing 

unnatural amino acids, which displayed high stability 

in serum and had broad-spectrum antimicrobial 

activity. Wang et al. (2019) used a minimalist de novo 

design approach to establish an antitrypsin / 

antichymotrypsin hydrolytic peptide sequence unit, 

namely (XYPX)n (X = isoleucine, leucine, or valine; 

Y = lysine, or arginine; and n is the number of repeat 

units). Among these designed peptides, peptide 16 

with (IRPI)7 sequence had the highest average 

selectivity index (GMSI) against all of the tested 

Gram-negative bacteria, with a GMSI of 99.07. 

Importantly, peptide 16 also had resistance to trypsin 

/ chymotrypsin hydrolysis at higher concentrations. 

Nagarajan et al. (2018) designed a series of AMPs 

based on a long short-term memory (LSTM). All of 

these designed peptides displayed broad-spectrum 

antimicrobial activity. Kaur et al. (2020) prepared 

peptide cryptdin-2 in E. coli using recombinant DNA 

technology, and then a PEG-conjugated variant of 

cryptdin-2 was obtained using thiol-specific 

PEGylation. The obtained PEGylated cryptdin-2 had 

good serum stability and low toxicity, and could be 

used in combination with other conventional 

antibiotics. 

 

Chemical synthesis of AMPs 

Direct extraction (Mandal et al., 2009), 

enzymatic hydrolysis (Real Hernandez and Gonzalez 
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De Mejia, 2019), recombinant DNA technology (Li, 

2011; Zhan et al., 2020), and other methods (He et al., 

2016; Przybylski et al., 2020) could be used to 

acquire AMPs. However, most of these methods were 

complex, time-consuming, and low yield, which 

make them suitable only for laboratory research than 

large-scale production. Importantly, some precisely 

modified AMPs (e.g., unnatural amino acid, fatty 

acid, aromatic acid, PEG, etc.) were difficult to 

achieve using the above methods. Therefore, 

chemical synthesis gradually became the mainstream 

of peptide preparation technology, which could be 

used to synthesise AMPs with high yield, complex 

structure, and accurate modification. Li et al. (2021b) 

nicely reviewed the chemical modifications of AMPs, 

e.g., lipidation, glycosylation, N-/C-terminal unusual 

modifications, and conventional antibiotics 

conjugation; and the authors also mentioned the 

examples of solid-phase synthesis for these AMPs. 

Merrifield (1963) proposed the solid-phase 

peptide synthesis (SPPS) technology developed on 

the basis of liquid-phase peptide synthesis (LPPS). 

SPPS, carried out on a solid support, included the 

process of repeatedly adding amino acids from the C-

terminus (carboxyl terminus) to the N-terminus 

(amino terminus) (Scheme 1). To prevent the 

occurrence of side reactions, the side chains of the 

amino acids were protected. When compared with 

LPPS, SPPS had significant advantages of being 

rapid, efficient, simple, high yield, automatic, etc. 

(Amblard et al., 2006). Boc and Fmoc strategy were 

the two main strategies for SPPS. In general, SPPS 

could efficiently synthesise both linear and cyclic 

peptides. 

 

 
Scheme 1. Schematic illustration of solid‐phase peptide synthesis (SPPS). Take amide-MBHA resin as an 

example, Fmoc: amino protecting groups; Pr: side chain protecting groups. 

 

Solid-phase synthesis of linear peptide  

SPPS is a relatively mature method for 

synthesising linear peptides. Linear peptide Cn-

AMP1 isolated from green coconut water (Cocos 

nucifera) exerted activity against E. coli, B. subtilis, 

S. aureus, and P. aeruginosa (Mandal et al., 2009). 

Cn-AMP1 was synthesised by SPPS using the Fmoc 

strategy, and showed a wide range of activities, 

including antimicrobial and immunostimulatory 

(Silva et al., 2012). Anaya et al. (2020) revealed that 

the synthetic Cn-AMP1 showed little cytotoxicity 

toward LS180 and Caco-2 cell lines, and had no effect 

on the expression and activity of P-glycoprotein. 

Zhao et al. (2021) synthesised a series of BRCA1 

http://dict.youdao.com/w/eng/synthesise/?spc=synthesise#keyfrom=dict.typo
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(856-871) analogues containing 16 amino acid 

residues using the SPPS method, which were 

characterised by reversed-phase high-performance 

liquid chromatography (RP-HPLC) and electron 

spray ionisation mass spectrometry (ESI-MS). SPPS 

had been widely used to synthesise non-amino acid-

modified linear peptides (e.g., PEGylation, lipidation, 

acetylation, phosphorylation, glycosylation, etc.). 

Ardila-Chantré et al. (2020) synthesised a group of 

short peptides modified with non-peptide molecules 

(6-aminohexanoic acid, ferrocene, caffeic acid, 

ferulic acid, and oxolinic acid) by SPPS using the 

Fmoc strategy. The synthetic peptide conjugates were 

purified by reversed-phase solid-phase extraction 

(RP-SPE), and characterised by RP-HPLC, MALDI-

TOF MS, and circular dichroism spectrum. These 

conjugates exhibited higher antimicrobial activity 

than the original unconjugated peptides. Paquet-Côté 

et al. (2020) synthesised three simplified model 

peptides that bore crown ethers. These peptides were 

characterised by HPLC and high-resolution mass 

spectra (HR-MS). The effects of the peptide length 

and crown ether ring size on their secondary 

structures and activity were studied. Nielsen et al. 

(2022) synthesised a set of peptoids with lipid tails or 

halogen substituents using a sub-monomer approach 

by sub-monomer solid-phase synthesis with a 

cocktail of trifluoroacetic acid, triisopropylsilane, and 

water being used as a cleavage reagent. The synthetic 

peptoids were purified using preparative HPLC, and 

characterised by analytical UPLC/MS. The small-

angle X-ray scattering results showed that these 

peptoids self-assembled to different morphologies. 

Peptoids capable of forming ellipsoids or bundled 

assemblies exhibited improved antibacterial, 

antibiofilm, and anti-abscess activities. 

 

Solid-phase synthesis of cyclopeptides 

Cyclopeptides synthesised by solid-phase 

synthesis could avoid inter-molecular dimerisation or 

multimerisation. As per the cyclisation method, it can 

be divided into head-to-tail, sidechain-to-sidechain, 

sidechain-to-end, and disulphide-bridge. Tamaki et 

al. (2006) synthesised the precursor of GS (H-D-Phe-

Pro-Val-Orn-Leu-oxime) on a resin (loading of 

oxime group: 0.48 mmol/g) by SPPS using the Boc 

strategy, and then cyclised it in different solutions. 

The experimental results showed that from among 

these solvents, the cyclisation in 1,4-dioxane gave the 

best yield. Thomsen et al. (2020) synthesised 18 

cyclic peptide analogues based on the peptide BSI-9 

on a TentaGel®S RAM (90 μm) resin with a loading 

of 0.22 mmol/g. The cleavage was performed with a 

TFA:H2O:TIS (95:2.5:2.5, v/v) solution for 2 h. 

Peptide 11 (Dab3 ‐> Arg) exhibited improved activity 

against S. aureus and P. aeruginosa, with MICs of 4 

and 8 μg/mL, respectively. Qu et al. (2020) used the 

native chemical ligation (NCL)-assisted 

diaminodiacid (DADA) strategy to synthesise 

disulphide surrogate peptides. The peptide sequences 

were firstly synthesised using Fmoc SPPS and the 

intramolecular cyclisation using hydraside-based 

NCL. The stability studies indicated that the 

disulphide replacements could overcome disulphide 

reduction and scrambling. Bicyclic peptides, with 

dual conformational constraints and rigid structures, 

are more resistant to proteolytic degradation as 

compared to linear and monocyclic peptides 

(Ahangarzadeh et al., 2019). Jaradat et al. (2019) 

synthesised a cyclopeptide containing two disulphide 

bonds on a resin by orthogonal protection approach, 

and the cyclopeptide was analysed and characterised 

by LC-MS/MS and HPLC. The purified peptide 

showed excellent antimicrobial activity against the 

tested Gram-positive and Gram-negative bacteria. 

Zhu et al. (2021a) prepared a thioether-bonded 

bicyclic peptide using Trt- and StBu-protected 

cysteines. Chen et al. (2021) synthesised a linear 

peptide by SPPS, and then cross-linked the peptide 

head-to-tail and sidechain-to-sidechain to obtain a 

group of bicyclic helical peptides. For the head-to-tail 

cross-linking, the N-terminal amino group and the C-

terminal carboxyl group were modified with 3-

thiopropionic acid (MPA) and 2-mercaptoethylamine 

(MEA), respectively, and then were connected by 

1,4-dibromomethylbenzene. For the sidechain-to-

sidechain, the amino acid residues were mutated to 

cysteine at positions i and i+3, or positions i and i+4, 

and were cross-linked by 1,3-

dibromomethylbenzene. These bicyclic peptides had 

enhanced proteolytic stability, helicity, and 

bioactivity. 

 

Antimicrobial activity evaluation 

The antimicrobial activity of AMPs could be 

evaluated by multiple methods; however, existing 

studies on AMPs focused on in vitro and in vivo 

antimicrobial assays (Fuscaldi et al., 2021).  

 

In vitro antimicrobial activity evaluation 

In vitro antimicrobial experiments have a short 

duration, good repeatability, rapidity, and 

https://xueshu.baidu.com/usercenter/paper/show?paperid=6f78875d9d3e1e4cc0c535450b268554&site=xueshu_se
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convenience. It can be used to get the antimicrobial 

spectrum of the AMPs, and screen out the highly 

active AMPs in a short time (Elyass et al., 2021). 

However, in vitro antimicrobial activity lacks a 

unified standard method due to a large number of 

AMPs and their different physicochemical properties. 

The most common methods for evaluating the in vitro 

antimicrobial activity are the agar diffusion method 

(Fisher et al., 2016) and broth microdilution method 

(Otvos and Cudic, 2007). 

The activity of peptide Brevinin-2GUb and its 

analogues against Gram-positive bacteria (e.g., S. 

aureus MRSA, E. faecalis), Gram-negative bacteria 

(E. coli, K. pneumoniae, P. aeruginosa), yeast (C. 

albicans), and clinical isolates MRSA were evaluated 

by the broth microdilution method (Lin et al., 2021). 

A series of two-fold peptide dilutions were added to 

a 96-well plate, and incubated with bacterial cells at 

37°C overnight. The minimum inhibitory 

concentrations (MICs) of the peptides were 

determined from the optical density using a 

microplate reader. The minimum bactericidal 

concentrations (MBCs) were obtained by spreading 

10 µL of each clear well onto a Mueller Hinton Agar 

(MHA) plate. The MICs and MBCs of Brevinin-

2GUb and its analogues against those 

microorganisms helped the authors to screen out a 

peptide analogue, tB2U-6K, which had higher 

activity than Brevinin-2GUb and other analogues. 

Fang et al. (2019) qualitatively and quantitatively 

compared the activity of octopus scraps peptides-zinc 

chelate (OSPH-Zn) and zinc salts against S. aureus by 

agar disk diffusion method and broth microdilution 

method. The sterile filter paper discs containing 

OSPH-Zn (100 mg/mL) or zinc salts (100 mg/mL) 

were placed on the Luria-Bertani Agar (LBA) plate, 

and inoculated with bacterial suspension at 37°C for 

18 h. In the presence of OSPH-Zn and zinc salts, the 

inhibition zone areas were 482.93 ± 22.03 and 289.51 

± 17.05 mm2, respectively. These results showed that 

OSPH-Zn had higher antimicrobial activity than 

inorganic zinc salts against S. aureus. The MIC of 

OSPH-Zn against S. aureus was 1.56 mg/mL, which 

was significantly lower than that of inorganic zinc 

salts, thus confirming the results of the agar disk 

diffusion method. Wang et al. (2020b) investigated 

the susceptibilities of bacteria to peptide CAMP211-225 

using E. coli, Y. enterocolitica, L. monocytogenes, K. 

pneumoniae, S. aureus, and B. subtilis as the indicator 

bacteria. The broth microdilution method was used to 

determine the MICs of CAMP211-225 against the six 

pathogenic bacteria. The results showed that the 

MICs of CAMP211-225 against E. coli and Y. 

enterocolitica were 3.125 and 6.25 μg/mL, 

respectively. However, CAMP211-225 failed to show 

activity against the other three bacteria at a 

concentration of 50 μg/mL. Furthermore, the activity 

of CAMP211-225 against E. coli and Y. enterocolitica 

was confirmed by disk diffusion assay. The diameters 

of the inhibition zone were 7 - 16 mm (mean 10.43 

mm) for E. coli and 8 - 15 mm (mean 10.56 mm) for 

Y. enterocolitica. The CAMP211-225 thus presented 

potent activity against pathogenic E. coli and Y. 

enterocolitica, which was consistent with the 

conclusion obtained by the broth microdilution 

method.  

 

In vivo antimicrobial activity evaluation 

In vivo, antimicrobial experiments using 

animal models, further validated the antimicrobial 

activity of the AMPs under physiological conditions, 

which is more convincing than in vitro experiments. 

In vivo antimicrobial experiments prepared an 

important foundation for the clinical application of 

AMPs. At present, the animal models used for the in 

vivo antimicrobial studies are mainly murine, 

including ICR mouse, Wistar rat, Holtzman rat, CD-

1 mouse, CFW-1 mouse, etc. (Cirioni et al., 2008; Wu 

et al., 2021).  

Zhu et al. (2019) investigated the activity of the 

combination of AMPs HPRP-A1, HPRP-A2, and 

chlorhexidine acetate (CHA) against bacteria and the 

fungus C. albicans in mouse and rat vaginitis 

infection models. The adult female ICR mice (20 - 25 

g) and Wistar rats (180 - 200 g) were used to construct 

the models of mouse C. albicans vaginitis infection 

and rat bacterial (E. coli and S. aureus) vaginitis 

infection, respectively. The efficacy was assessed by 

bacterial count, external vaginal surface appearance, 

and allergic reactions. The results showed that the 

combination of AMPs HPRP-A1, HPRP-A2, and 

CHA had strong synergistic effects on mouse and rat 

vaginitis infection models. The combination of 

HPRP-A2 and CHA, specifically, could achieve 

99.9% of inhibition against infections in 

gynaecological vaginitis caused by bacteria and 

fungus in both the rat and mouse models. Wu et al. 

(2021) selected healthy ICR mice aged 4 - 5 weeks to 

establish a sepsis model by intraperitoneal injection 

of amoxicillin-resistant E. coli 7,000,853,626. The 

mice were intraperitoneally injected with peptide 

PCL-1 twice at 0.5 and 2 h after infection. After 
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infection for 8 h, the bacterial burden in the tissues 

and blood was tested by survival rate and bacterial 

titres. The results showed that PCL-1 effectively 

improved the survival rate of mice that were 

systemically infected with drug-resistant E. coli by 

effectively removing bacteria from blood and organs. 

  

Application potential of AMPs 

AMPs generally have broad-spectrum 

antimicrobial properties, high stability, and low 

cytotoxicity. Therefore, AMPs have potential 

application prospects in the fields of agriculture, 

animal husbandry, food industry, and medicine 

(Figure 1). 

 

 
 

Figure 1. Applications of AMPs in multiple fields. 

 

Applications in agriculture 

Pest control has been an important measure for 

reducing crop damage and increasing crop yield. 

Transgenic crops resist different kinds of pathogens, 

and effectively reduce the use of chemical pesticides 

(Panopoulos et al., 1996). Researchers have been 

trying to transfer antimicrobial peptide genes into 

crops to develop new disease-resistant varieties, 

which have great significance in reducing agricultural 

production costs and protecting the ecological 

environment.  

Radish defensin Rs-AFP2 was efficiently 

expressed in tobacco and tomato, and the obtained 

transgenic plants could resist Alternaria longipes 

(Terras et al., 1995). The expression of the cecropin 

B gene in the phloem tissues of transgenic plants 

decreased the host's susceptibility to Huanglongbing 

(HLB) (Zou et al., 2017). The antimicrobial peptide 

genes Shiva A and Cecropin B were introduced into 

the genome of sweet orange by Agrobacterium 

tumefaciens-mediated transformation and 

regeneration of mature axillary buds. Artificial 

inoculation experiments further indicated that the 

resistance of transgenic plants to X. axonopodis pv. 

citri was enhanced in comparison with non-

transgenic lines (He et al., 2011). Biliarski et al. 

(2020) expressed two fusion lytic peptides, ORF13 

and RSL1, in Nicotiana benthamiana tobacco plants, 

and then tested their resistance activity against three 

fungal pathogens, Sclerotinia sclerotiorum, 

Rhizoctonia solani, and Pythium species. The 

symptom area of each leaf was measured, and found 

that the transgenic plant lines ORF13 and RSL1 had 

resistance against Sclerotinia sclerotiorum and 

Rhizoctonia solani. 

 

Applications in animal husbandry  

Antibiotics have played an important role in 

preventing and treating diseases and ensuring the 

development of animal husbandry. However, long-

term abuse of antibiotics in animal husbandry has 

resulted in many serious problems, e.g., bacterial drug 

resistance, antibiotic residues, and ecological 

pollution (Bacanli and Başaran, 2019). The European 

Union banned the use of antibiotic growth promoters 

in animal feed in 2006. Later, many other countries 
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also introduced policies to limit the use of antibiotics. 

Therefore, seeking green and pollution-free 

alternatives to antibiotics became an inevitable 

choice.  

AMP Microcin J25 (MccJ25), produced by a 

faecal strain of E. coli, demonstrated strong activity 

against E. coli (Sable et al., 2000). Dietary 

supplementation with MccJ25 effectively promoted 

animal growth performance, enhanced intestinal 

barrier function, improved faecal microbiota 

composition, and attenuated diarrhoea and systematic 

inflammation (Yu et al., 2017; Wang et al., 2020a). 

Shi et al. (2018) added composite antimicrobial 

peptide (CAP) into the basal diet of weaned piglets. 

The results showed that CAP maintained intestinal 

microflora homeostasis, ameliorated the faecal 

microflora, increased the apparent digestibility of 

nutrients, and enhanced the growth performance and 

health status of weaned piglets. Bovine respiratory 

pathogen, Histophilus somni, is one of the most 

important bacterial pathogens associated with the 

bovine respiratory disease complex (BRDC). 

Dassanayake et al. (2017) synthesised a series of 

bovine NK-lysin-derived peptides, namely NK1, 

NK2A, NK2B, and NK2C, which were effective in 

killing Histophilus somni at 10 - 30 μM. The mixed 

formulations of AMPs and other additives were 

effective in improving the growth performance and 

immune protection of poultry (Wang et al., 2011). 

The mixture of Laminaria japonica powder (LJP) and 

cecropin used as feed supplements significantly 

inhibited the growth of E. coli, and promoted the 

growth of Lactobacillus, thereby improving the 

growth performance and immune function of broilers 

(Bai et al., 2019). 

  

Applications in food industry 

Food preservatives are critical for food safety, 

which can prevent food spoilage and prolong the food 

shelf life. However, in recent years, some reports 

have shown that long-term excessive use of 

traditional chemical preservatives (e.g., nitrite and 

sulphur dioxide) caused adverse effects on human 

health. Therefore, the development of natural 

preservatives became important for the food industry. 

Recently, AMPs nisin (Shin et al., 2016) and ε-poly-

L-lysine (Chheda and Vernekar, 2015) have been 

approved as food preservatives in some countries, and 

certified as Generally Recognized as Safe (GRAS) by 

the U.S. Food and Drug Administration (FDA).  

Nisin has been widely used in various foods, 

such as milk, dairy desserts, processed cheeses, 

meats, canned foods, alcoholic beverages, etc. (de 

Souza de Azevedo et al., 2019). The antimicrobial 

activity of nisin is, however, affected by unfavourable 

factors, e.g., an alkaline environment, high 

temperature, and some specific protease. Therefore, 

great efforts are devoted to improving the stability of 

the antimicrobial activity of nisin. The antimicrobial 

activity and stability of the covalently bonded gellan 

gum with nisin improved against S. epidermidis and 

B. subtilis when compared with nisin alone (Peng et 

al., 2020). Nisin nanoparticles, prepared using a facile 

nanoprecipitation technique, exhibited higher 

antimicrobial activity than free nisin after autoclaving 

at 121°C for 20 min (Chang et al., 2018). A single 

food preservative usually exerted its antimicrobial 

effect on a specific spoilage bacterium, and had no or 

weak inhibitory effect on other bacteria. When 

different types of preservatives were used in 

combination, the synergistic effect enhanced their 

antimicrobial effect, reduced the amount of a single 

preservative used, and reduced the production cost. 

Previous reports had shown that chitosan extracted 

from shrimp shells exhibited excellent antimicrobial 

activity, and prolonged the food shelf life (Abdel-

Rahman et al., 2015; Dotto et al., 2015). The 

combination of 1% chitosan and 0.6% nisin 

demonstrated quality improvement of the large 

yellow croaker, e.g., moisture loss control, volatile 

spoilage inhibition, TVB-N reduction, TVC growth 

control, colour, and sensory acceptability 

maintenance (Hui et al., 2016). Peng et al. (2018) 

used 1% chitosan and different concentrations of 

nisin as preservatives to investigate their effect on the 

quality of jumbo squid (Dosidicus gigas) during cold 

storage. The results showed that 1% chitosan 

combined with 6 g/L nisin effectively inhibited the 

reproduction of microorganisms, and the degradation 

of nutrients. Meanwhile, it maintained high sensory 

scores, low moisture loss, and volatile spoilage 

products. Liu et al. (2020) evaluated the effect of 

sodium lactate (SL) coating enriched with nisin on 

beef, where 4% SL combined with 2 g/L nisin 

prolonged the shelf life of beef samples. 

The peptides r(P)ApoBL
Pro, r(P)ApoBL

Ala, and 

r(P)ApoBS
Pro derived from human apolipoprotein B-

100 (ApoB), exerted a wide range of properties, e.g., 

antimicrobial, antibiofilm, wound healing, and 

immunomodulatory (Gaglione et al., 2020). 
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Dell’Olmo et al. (2021) prepared the coating 

solutions composed of chitosan and ApoB-derived 

peptides. The coating solutions prevented Salmonella 

cells from adhering to various common surfaces in 

food manufacturing environment, and inhibited the 

proliferation of microorganisms in chicken meat 

samples. AMP C12O3TR, obtained by adding lauric 

acid to the N-terminus of peptide H-Orn-Orn-Trp-

Trp-NH2 (O3TR), exhibited 2- to 8-fold more 

activity than O3TR against filamentous fungi (F. 

culmorum, P. expansum, and A. niger) and yeast (S. 

cerevisiae, Z. bailii, Z. rouxii, D. hansenii, and K. 

lactis). After seven days, C12O3TR effectively 

inhibited the growth of yeast and A. niger in 

commercial lager, carbonated soft drink, and apple 

juice, while O3TR inhibited the yeast in commercial 

lager and carbonated soft drink (Thery et al., 2018). 

Nie et al. (2021) designed four novel chimeric lysins 

(P361, P362, P371, and P372) by fusing Salmonella 

phage lysin with AMP LeuA-P. The combination of 

P362, P372, and potassium sorbate effectively 

reduced the microbial counts in contaminated chilled 

chicken and extended the shelf life by seven days. 

 

Applications in medicine  

AMPs have become important candidates for 

new antimicrobial, antiviral, and anticancer drugs due 

to their excellent physicochemical properties and 

biological activities. Moreover, AMPs also have the 

properties of immunomodulating, neutralising 

endotoxin, and promoting cell division. The U.S. 

Food and Drug Administration (FDA) has approved 

several AMPs, including colistin, gramicidin D, 

daptomycin, polymyxin B, vancomycin, and 

oritavancin as clinical infection therapeutics.  

The human peptide LL-37 produced by 

neutrophils and epithelial cells had an inhibitory 

effect on Gram-positive and Gram-negative bacteria 

(Nilsson, 2020), and also played an important role in 

wound healing (Ramos et al., 2011), angiogenesis, 

and arteriogenesis (Koczulla et al., 2003). Peptide 

LvHemB1 induced apoptosis by permeating cells and 

targeting mitochondrial voltage-dependent anion 

channel 1 (VDAC1); thus, it could be used as an 

anticancer agent for the treatment of human cervical 

(HeLa), oesophageal (EC109), hepatocellular 

(HepG2), and bladder (EJ) cancer cell lines (Liu et 

al., 2022). Specifically targeted antimicrobial 

peptides (STAMPs) promoted AMPs to specifically 

target tumour tissue and cells, and achieved the goals 

of targeted therapy and killing. Wang et al. (2020c) 

connected the LPS-targeting peptide LBP14 with the 

killing domain N6 via different linkers to generate 

LPS-targeted chimeric peptides (SCPs)-A6 and G6. 

The SCPs-A6 and G6 improved the mouse survival 

rate, and alleviated lung injuries by blocking 

mitogen-activated protein kinase and nuclear factor 

kappa-B p65 activation. Moreover, SCPs-A6 and G6 

showed remarkable efficacy as antimicrobial and 

anti-endotoxin agents in the treatment of bacterial 

infection and sepsis. Drug combination treatment was 

one of the most effective methods against 

microorganisms, viruses, and cancers in clinical 

setting (Zerweck et al., 2017). The combination of 

AMPs HPRP-A1, HPRP-A2, and chlorhexidine 

acetate (CHA) showed synergistic effects against 

bacteria, fungus, and biofilms in vitro and in vivo. In 

particular, the combination of HPRP-A2 and CHA 

had a significant inhibitory effect on the 

gynaecological vaginitis infection caused by bacteria, 

C. albicans, or biofilms in rat and mouse vaginitis 

models (Zhu et al., 2019; 2021b). 

 

Conclusion 

 

AMPs have become an attractive candidate for 

the development of novel antimicrobial agents due to 

their numerous advantages. In the present review, we 

demonstrated a number of effective strategies for 

designing and modifying AMPs to enhance their 

performance. Additionally, we highlighted the 

application of solid-phase peptide synthesis 

technology in peptide preparation, and summarised 

the methods for evaluating the antimicrobial activity 

of AMPs. Finally, the applications of AMPs in 

agriculture, animal husbandry, food industry, and 

medicine were proposed. We believe that the 

development of novel AMPs will have a positive 

impact on human life and health. 
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